6 CONCLUSÕES

- ➤ O precursor de cério, dos parâmetros de preparação do CeO₂-ZrO₂ estudados, é o mais relevante pois ele define as fases cristalinas presentes e, consequentemente, a redutibilidade do sistema.
- ➤ Foi verificado nos diversos sistemas sintetizados que o Ce(NO₃)₃, nas condições estudadas, promove a formação de uma mistura de óxidos, enquanto que o uso do (NH₄)₂Ce(NO₃)₆ leva a obtenção de solução sólida CeO₂-ZrO₂.
- ➤ A presença de solução sólida aumenta a redutibilidade e, consequentemente, a capacidade de armazenamento de oxigênio dos sistemas CeO₂-ZrO₂.
- ➤ A técnica de adsorção de metanol por infravermelho-FTIR se mostrou eficiente na determinação da composição superficial dos sistemas CeO₂-ZrO₂.
- ➤ A utilização do precursor Ce(NO₃)₃ promove a presença de uma mistura de óxidos onde as fases formadas são o *c*-CeO₂ e o *t*-ZrO₂. Nesses sistemas observou-se também a formação de uma solução sólida superficial. A presença de Zr na mistura de óxidos promove a redução do CeO₂.

Conclusões 84

A solução sólida obtida a partir do procedimento padrão mostrou baixa estabilidade quando submetida ao procedimento de envelhecimento térmico severo.